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Introduction
AMG510, a novel KRAS G12C mutation-specific inhibitor approved in 2021 by
the FDA, was the first therapy to directly target the KRAS oncoprotein in KRAS-
mutant cancers, with MRTX849 as the second drug therapy approved in 2022.
However, the emergence of resistance in patients who initially were responsive
is a challenge. Uncovering the underlying mechanism of resistance would
support the identification and development of novel therapies to overcome drug
resistance. Several studies show that diverse genomic and histologic
mechanism can confer resistance to covalent KRAS G12C inhibitors, including
KRAS mutation. In this study, a panel of KRAS G12C inhibitor-resistant tumor
models were generated by introducing a secondary KRAS mutation on top of
G12C for use as in vitro and in vivo tools to develop possible strategies to
overcome such resistance.

Methods
• CRISPR/Cas9 was used to introduce a secondary KRAS mutation, including

Y96C, Y96D and Y96S was introduced into MIA PaCa-2, a human pancreatic
carcinoma cell line, which harbors a homozygous KRAS G12C mutation.
Point mutation knock-in was validated by sanger sequencing and cell identity
was confirmed by SNP.

• The cell viability was measured by CellTiter-Glo after five days incubation
with AMG510 and MRTX849.

• RAS–MAPK pathway activity was assessed in the parental and mutant cell
lines Y96D by western blot.

• A xenograft of MIA PaCa KRAS G12C/Y96D cells was also established.

Results
• Successful homozygous point mutation knock-in was achieved as confirmed

by Sanger sequencing (Figure 1B). The double mutant cells displayed a
similar growth rate (Figure 1D) as well as cell morphology (Figure 1C).

• In cell viability assays, relative to KRAS G12C parental cells, cells
expressing double-mutant alleles showed marked resistance to AMG510 and
MRTX849 (Figure 2A).

• Consistent with the effects on cell viability, persistent phosphorylated ERK
(p-ERK) and p-RSK levels were also observed in KRAS G12C/Y96D
expressing cells even at high concentrations of MRTX849, indicating
sustained RAS-MAPK activity (Figure 2B,C).

• In addition, MIA PaCa-2-KRAS G12C/Y96D was able to grow in vivo (Figure
3A,B) and will be used for pharmacological evaluation of KRAS inhibitors.
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Figure 1. Generation of KRAS Y96D, Y96C and Y96S point mutation in MIA PaCa-2 via CRISPR/Cas9.

Conclusion
In summary, the KRAS double-mutant cells generated via CRISPR/Cas9 showed remarkable resistance to
KRAS G12C inhibitors in vitro, consistent with persistent ERK activity, and can be used to assess preclinical in
vitro / in vivo efficacy of novel KRAS-targeted therapeutics aimed to overcome resistance in the clinic. Crown
Bioscience is developing a series of KRAS G12C inhibitor-resistant cell lines and patient-derived organoids to
better facilitate efficacy testing of KRAS-targeted therapeutics.
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Figure 2. Cellular characterization of MIA PaCa-2-KRAS mutant cells in vitro.

Cell line AMG510 MRTX849

MIA PaCa-2 138.04 151.36

MIA PaCa-2-KRASY96D NA 3595.66

MIA PaCa-2-KRASY96C NA 2829.02

MIA PaCa-2-KRASY96S NA 3214.48
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1A. Scheme of developing a stable cell line with point mutation knock-ins by CRISPR/Cas9.
1B. Genomic DNA was extracted from MIA PaCa-2 and engineered clones of KRASY96D, KRASY96C and

KRASY96S. The target region was PCR-amplified followed by Sanger sequencing.
1C. Cell morphology of MIA PaCa-2 and the mutant cell lines was observed under microscopy and

images were taken via digital camera (scale bar=200μm).
1D. Cells were seeded in 96-well plate at 2000 cells per well and cell growth kinetics were monitored on

day one to day three by CellTiter-Glo. N=3, error bars=standard deviation.
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2A. Cell viability assays performed in MIA PaCa-2, MIA PaCa-2-KRASY96D, KRASY96C or KRASY96S

mutant cell lines. Cells were treated with indicated drugs and the viabilities were measured with
CellTiter-Glo. IC50 was summarized in the table. N = 3, error bars = standard deviation.
2B. Western blot analysis was performed after treating MIA PaCa-2 cells or MIA PaCa-2 KRASY96D

with vehicle or indicated concentration of AMG510 or MRTX849 for 4 hours.
2C. Quantification of phosphorylation of ERK and RSK levels in western blot analysis.
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Figure 3. Model validation of MIA PaCa-2-KRASY96D in vivo.
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3A. MIA PaCa-2-KRASY96D was inoculated into BALB/c nude mice or NCG mice and tumor
volume was measured every three or four days. N=8, error bars=standard error mean.
3B. Body weight change was also monitored. N=8, error bars=standard error mean.
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